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Abstract

Aranha, Ana Sofia Viotti Daker ; Street, Alexandre (Advisor);
Granville, Sérgio (Co-Advisor). Risk-constrained Optimal Dy-
namic Trading Strategies Under Short- and Long-term Un-
certainties. Rio de Janeiro, 2021. 63p. Dissertação de Mestrado –
Departamento de Engenharia Elétrica, Pontifícia Universidade Ca-
tólica do Rio de Janeiro.

Recent market changes in power systems with high renewable energy pe-
netration highlighted the need for complex profit maximization and protection
against price volatility and generation uncertainty. This work proposes a dy-
namic model to represent sequential decision making in this current scenario.
Unlike previously reported works, we contemplate uncertainties in both stra-
tegic (long-term) and operational (short-term) levels, all considered as path-
dependent stochastic processes. The problem is represented as a multistage
stochastic programming model in which the correlations between inflow fo-
recasts, renewable generation, spot and contract prices are accounted for by
means of interconnected long- and short-term decision trees. Additionally, risk
aversion is considered through intuitive time-consistent constraints. A case
study of the Brazilian power sector is presented, in which real data was used
to define the optimal trading strategy of a wind power generator, conditioned
to the future evolution of market prices. The model provides the trader with
useful information such as the optimal contractual amount, settlement timing,
and term. Furthermore, the value of this solution is demonstrated when com-
pared to state-of-the-art static approaches using a multistage-based certainty
equivalent performance measure.

Keywords
Energy trading; Multistage stochastic optimization; Portfolio selection;

Risk management; Time-consistent risk measures.
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Resumo

Aranha, Ana Sofia Viotti Daker ; Street, Alexandre; Granville, Sér-
gio. Otimização de Estratégias Dinâmicas de Comerciali-
zação de Energia com Restrições de Risco sob Incertezas
de Curto e Longo Prazo. Rio de Janeiro, 2021. 63p. Disserta-
ção de Mestrado – Departamento de Engenharia Elétrica, Pontifícia
Universidade Católica do Rio de Janeiro.

Mudanças recentes em mercados de energia com alta penetração de fontes
renováveis destacaram a necessidade de estratégias complexas que, além de
maximizar o lucro, proporcionam proteção contra a volatilidade de preços
e incerteza na geração. Neste contexto, este trabalho propõe um modelo
dinâmico para representar a tomada de decisão sequencial no cenário atual.
Ao contrário de trabalhos relatados anteriormente, este método fornece uma
estrutura para considerar as incertezas nos níveis estratégico (longo prazo)
e operacional (curto prazo) simultaneamente. É utilizado um modelo de
programação estocástica multiestágio em que as correlações entre previsões
de vazão, geração renovável, preços spot e preços contratuais são consideradas
por meio de uma árvore de decisão multi-escala. Além disso, a aversão ao risco
do agente comercializador é considerada por meio de restrições intuitivas e
consistentes no tempo. É apresentado um estudo de caso do setor elétrico
brasileiro, no qual dados reais foram utilizados para definir a estratégia
ótima de comercialização de um gerador de energia eólica, condicionada à
evolução futura dos preços de mercado. O modelo fornece ao comercializador
informações úteis, como o montante contratado ideal, além do momento
ótimo de negociação e duração dos contratos. Além disso, o valor desta
solução é demonstrado quando comparado a abordagens estáticas, através de
uma medida de desempenho baseada no equivalente de certo do problema
multiestágio.

Palavras-chave
Comercialização de energia; Seleção de portfólio; Gerenciamento de

risco; Otimização dinâmica estocástica; Árvore de decisão.
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Nomenclature

Sets and Indexes

C Set of forward contracts c.

Cbuy Set of energy buying forward contracts c.

Cndfbuy Set of energy buying NDF contracts c.

Cndfsell Set of energy buying NDF contracts c.

Csell Set of energy selling forward contracts c.

Ht Set of hours h in stage t.

L Set of leaf nodes l, where L ⊂ N .

N Set of tree nodes n.

Nt Set of tree nodes n on stage t.

P Set of plants i.

S Set of scenarios s.

Sn Set of scenarios s at node n.

T Set of stages (weeks) t.

Parameters

α Confidence level used in CVaR calculation.

τc Decision stage of contract c.

τ endc Final stage of the delivery period for contract c.

τ startc Initial stage of the delivery period for contract c.

θ Maximum one-stage drawdown.

Ci Unitary cost of generating unit i, in R$/MWh.

Ei,h Firm energy certificate of unit i, in hour h, in MWh.
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Nomenclature 13

Fc,n Price, in R$/MWh, of contract c, at node n.

Gi,s,h Generation of unit i, scenario s, in hour h, in MWh.

n(s, t) Node containing scenario s in stage t. Denoted as n for simplification.

Ps Probability of scenario s.

Qc,h Maximum energy volume, in MWh, of candidate contract c, in hour h.

RJ
min Minimum CVaR allowed by week, if J = w or month, if J = l.

Ss,h Spot price in scenario s, hour h, in R$/MWh.

tn Stage of node n.

Decision Variables

δJn,s Auxiliary variable for CVaR computation in node (J = w) or leaf
(J = l), that represents the left deviation of the net revenue scenario s
to the variable zJn .

elgs,t Long energy position in scenario s, stage t.

eshs,t Short energy position in scenario s, stage t.

rs,t Net income in scenario s, stage t.

xc,n Percent value of maximum contract volume q(c, t) in node n.

zJn Auxiliary variable for CVaR computation that will determine the net
revenue VaR for each node (J = w) or leaf (J = l) at the optimum
solution.

Dual Variables

ηs,t Dual variable associated to the maximum drawdown constraint, defined
by scenario s and stage t.

γn Dual variables associated to the monthly aggregated CVaR constraints,
defined by leaf node n ∈ L.

λn Dual variables associated to the stage-wise CVaR constraints, defined
by node n.
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1
Introduction

1.1
Motivation and Literature Review

In recent years, there has been a significant increase in renewable energy
shares of energy matrices within developed and emerging countries. According
to analysts, the continuing trend will result in a series of changes in energy
markets [2]. More specifically, the high rate of solar and wind penetration
requires an increase in time granularity of settlement periods, while the
improved price signals will offer traders interesting opportunities to exploit
profitability. Notwithstanding, while the expansion of intermittent renewable
units will provide short-term marketing opportunities, it will also increase the
complexity of agents’ decision-making processes. In this setting, the increased
price volatility requires more sophisticated hedging and portfolio optimization
strategies.

Ever since the pioneering work of Markowitz [3], a great number of risk
averse portfolio optimization frameworks have been proposed. In recent years,
as defined and formulated in [4], risk is usually represented through financial
metrics, namely: variance, mean-variance (Markowitz model), shortfall proba-
bility, expected shortage, Value-at-Risk (VaR), and Conditional-Value-at-Risk
(CVaR).

Relevant works in related literature, such as [5–8], use portfolio selection
models to solve revenue maximization problems in the electricity market, in a
risk averse setting. In [7], the mean variance Markowitz theory is extended to
optimize a retailer’s client portfolio, considering the VaR metric. In [5] and [8],
the authors use a stochastic optimization model that maximizes the convex
combination between the expected revenue and CVaR, to account for both the
financial risk and return of generators. Meanwhile, [6] uses a hybrid robust-
stochastic optimization framework to determine the optimal renewable sources’
portfolio with commitments in the forward market, also characterizing risk
through a risk-adjusted objective function. Despite their relevance, the models
described in [7], [8], and [6] use fixed asset allocation methods (also known
as static), disregarding the fact that decisions can be postponed according to
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Chapter 1. Introduction 15

future market dynamics.
On this basis, this paper addresses one of the variants of portfolio op-

timization modeling known as a dynamic, or multistage (hereinafter used in-
terchangeably), approach. The significance of a dynamic solution has been
discussed in [9], [10, 11], and [12–14], among others. A critical point of these
works was the account for a decision process where investment/hedging deci-
sions are conditioned on system state. Therefore, the fact that decision makers
can take advantage of partially revealed information about uncertainties along
a time horizon can be incorporated in the model. To do so, the authors in [9]
use a hybrid robust-stochastic approach and create a real-option-based invest-
ment model for renewable power units considering a single yet dynamic long-
term contracting opportunity. In [11], a scenario tree framework ([15, 16]) is
used to outline the optimal scheduling of thermal generating units, considering
electricity and gas price uncertainties. However, scenario reduction techniques
([17, 18]) are used to translate hundreds of randomly generated scenarios into
a dozen, for the sake of computational tractability.

Furthermore, the characterization of risk policies in the multistage frame-
work largely relies on single-period or nested formulations ([12, 13] and [14]).
Thus, the consideration of time-consistent risk management policies that rely
on sophisticated multiperiod constraints in the multistage setting is a chal-
lenge.

Hence, the purpose of our work is to present a new methodology using
multistage stochastic programming to assist risk averse agents in creating
time-consistent optimal dynamic trading strategies under uncertainty. Since
forward/future contracts are one of the most active and basic derivatives
in electricity markets, this paper provides a procedure to determine the
optimal dynamic selection of forward contracts by a power producer or trading
company. In this context, agents face two types of uncertainties: short-term
operational uncertainties, associated with renewable generation and spot-price
volatility considered in studies such as [19–21], and long-term uncertainties
associated with strategic contracting decisions and the future evolution of
derivative prices.

The modeling complexity of our proposal derives from the fact that these
aspects do not necessarily have the same time scale and level of unpredictability
but are still coordinated. While operational targets are guided by several
uncertain variables, with time steps of hours, or even minutes, strategic
decisions regarding the optimal involvement in derivatives often depend on
the market response to these changes within a weekly or monthly time scale.
Nevertheless, to get a proper picture of the agent’s risks and profitability,
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Chapter 1. Introduction 16

the operational time scale is needed. Optimizing this process is analytically
challenging, since it requires a formulation of a multi-period contract portfolio
that incorporates correlated price and generation risks, as well as coherent
forward price formation, all of which stochastically evolve in path-dependent
processes.

Even though there is a rich literature regarding portfolio optimization
and uncertainty modeling, little attention has been paid to how short-term
operational aspects may affect long-term dynamic decisions. Among all afore-
mentioned related works, [9] is the closest to our target, since it is able to
consider dynamic decisions under both types of uncertainties by using a hy-
brid robust-stochastic and real option approach. In such model, the stochastic
and robust portion accounts for the plant production and spot price uncer-
tainty while a mean-reverting binomial lattice is used to represent contract
prices and bring the model to the dynamic world. However, the modeling is
not designed to embrace multiple-investment nor multiple-contracting deci-
sions. Furthermore, the authors use a nested-CVaR minimization to account
for risk aversion, which can be a non-intuitive and difficultly interpreted risk
policy.

In our model, we tackle these problems with a multistage stochastic
approach and use a dual scale decision tree model [22], which jointly considers
short and long-term uncertainties. As for risk averse agents, we propose
multiple intuitive risk policies, such as maximum drawdown [23], and stage-
wise and monthly aggregated constraints using Rockafeller’s representation of
CVaR [24], guaranteeing the temporal consistency (optimal planned decisions
are optimal in future problems for every path that uncertainties may take [13])
throughout the process and bringing flexibility to the model.

Moreover, we provide the mathematically grounded formulation of an
innovative performance measure used to compare risk constrained policies
under a single perspective. Hence, we are able to estimate the value of strategies
with various degrees of risk aversion to an agent with a specific dynamic
risk profile. Furthermore, the measure is general enough to allow comparisons
between dynamic and static solutions. Accordingly, it is possible to assess the
benefits of the proposed dynamic approach against the state-of-the-art static
works such as [8, 25].

1.2
Contributions

In short, this work contributes to the literature on portfolio management
and optimization as follows:
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Chapter 1. Introduction 17

1. Provides an optimal forward contracting decision support tool that
accounts for both short-term (operational) and long-term (strategic)
uncertainties under a multistage risk-constrained stochastic framework.

2. Considers realistic portfolios that may contain a high number of assets,
such as generating units, forwards, futures and other purely financial
derivatives.

3. Uses multiple intuitive and sound risk metrics to define time-consistent
multistage risk-averse strategies.

4. Provides and demonstrates the validity of a performance metric for risk-
averse policies. Moreover, the presented metric is general enough to allow
comparisons between solutions from dynamic and static approaches.

1.3
Work Organization

The remainder of this dissertation is organized as follows. In chapter 2
we discuss the principles of energy trading in electricity markets and give a
brief overview of the Brazilian market and its undergoing changes. Chapter 3
presents a theoretical background in uncertainty modeling, differentiating the
concepts of short- and long-term uncertainties. Practical examples of how each
uncertainty type impacts the modeling are provided. Furthermore, a frame-
work for combining uncertainties is proposed, detailing the trading problem
and building the proper connections between inflow forecasts, renewable gen-
eration, spot prices, scenario trees, and contract pricing.

Risks in the energy trading business as well as the most customary
risk measures are characterized in chapter 4. Moreover, the difficulties faced
regarding risk averse dynamic programming are addressed once the issue of
time-consistency is introduced. On this basis, three time-consistent risk metrics
are proposed.

In chapter 5, the mathematical formulation for the portfolio optimization
problem is presented. Chapter 6 validates a performance measure for the
comparison of solutions from different risk-averse policies. Chapter 7 provides
numerical results for a case study using realistic data from the Brazilian power
sector. Finally, relevant conclusions are drawn in chapter 8.
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2
Principles of Energy Trading

The energy trading activity is not a trivial task and requires active man-
agement by its agents. In this chapter, we present the principles of electricity
trading in both spot and derivative (contracting) markets. Furthermore, a brief
overview of the Brazilian electricity market is presented, including aspects of
its undergoing physical and regulatory changes.

2.1
Spot Market

The spot market is one of the core elements of electricity markets, as it
determines the prices paid for energy and related services at any given time
and location. Therefore, it provides the basis for electricity trading.

Depending on the market design, prices can be either formed through
(i) cost-based or (ii) bid-based approaches. In (i), generators must inform the
system operator of their operational costs so they can proceed to solve the
problem of minimizing the overall system operational cost, without interference
from any market agent. Furthermore, prices are determined by the marginal
cost of operation. Conversely, in (ii) agents can bid their individual costs
according to projections and studies carried out in a decentralized manner.
Prices are then defined by the maximization of social welfare.

Even though these approaches are clearly distinct, the spot prices are
dependent in many common variables such as the demand, fuel availability,
weather conditions, transmission exchange limits between regions, etc. Not
surprisingly, spot prices are, in general, subject to high volatility.

Moreover, with the recent downward trend in renewable power plants’
costs, there has been a significant increase in the share of wind and solar
technologies in the energy matrix of countries worldwide. This trend resulted
in overall benefits to the system and the society itself, such as reduced
prices and clean energy availability. In some cases, it also resulted in the
requirement of an increase in time granularity of settlement periods. This
change brings significant short- and long-term benefits to the system, such as
improved flexibility in operations through price signals, as well as optimized
investments in flexible generation capacity. Shorter market time units were
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Chapter 2. Principles of Energy Trading 19

recently explored in California (United States), Brazil, Germany and other
European markets [26].

Despite the undeniable benefits of renewable resources, the growth of
intermittent generation drastically impacted spot prices, leading to increased
volatility. Figure 2.1 displays the forecasted spot prices for the Brazilian system
in 2040, assuming a non conventional renewable installed capacity of 42% (28%
solar and 15% wind), expansion plan foreseen by experts. The forecast was
made using the Dual Dynamic Stochastic Programming (SDDP) [27], which
will be discussed further in Section 3.1.2.

Figure 2.1: Expected hourly spot prices in the Brazilian system, considering
high renewable penetration.

The increase in price volatility due to the high penetration of intermittent
sources becomes clear with Figure 2.1, as they require the drive of flexible
generating thermal units (usually costly) that are able to rapidly ramp output
up or down as the renewable generation fluctuates, providing stability to the
electric grid. The SDDP results are aligned with findings from [19] and [20].

2.2
Derivative Markets

One of the key takeaways of modern portfolio theory [3] introduced
by Harry Markowitz is the well-known portfolio diversification practice. It is
argued that asset diversification can help mitigate volatility and therefore is a
great way of balancing risks. In the electricity sector, diversification can take
place through physical and financial assets. Bearing in mind the purpose of
this dissertation, this section is restricted to financial mechanisms: the energy
derivatives.
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Chapter 2. Principles of Energy Trading 20

A derivative can be defined as a financial instrument whose value depends
on (or derives from) the values of other, more basic, underlying variables [28],
such as the electricity spot price. They play a key role in transferring a wide
range of risks from one agent to another, but can be also used for speculation
or arbitrage.

Forwards, futures, options, and swaps are examples of derivatives. Since
the first two are the most liquid derivatives in electricity markets, in this section
we provide an overview of how they work and how they can be used as financial
hedging instruments.

2.2.1
Conventional forwards

Forwards are the most traditional form of derivatives, as they were the
first type of contracts to be negotiated in the market. These are classified as
linear derivatives, as variations in spot prices translate directly into a linear
change in payoffs.

Forward contracts trading take place in the over-the-counter-market
(OTC), usually negotiated bilaterally between generators, consumers, and/or
trading companies. An energy selling (or short) forward contract is a commit-
ment to deliver an amount of energy, Q, for a given future period, and at a
given price, F , by either generating or buying it at the spot market. Likewise,
a buying (or long) forward contract is a commitment to buy an amount of
energy for a given period and at a given price, for consumption or selling in
the spot market. Therefore, they provide a fix revenue (or cost) of QF for the
parties involved.

These contracts can be used to lock in future prices and hedge against
the spot price volatility, facilitating profit predictability. A striking difference
between electricity and conventional contracts for other commodities such as
oil and metals is that, for the former, delivery is specified for a period of time
(weeks, months, years), while for the latter, full settlement occurs on an specific
delivery date [28].

As an illustrative example, suppose that a buyer (consumer) and a seller
(trading company) agree to settle a 1 MWh forward contract for 160 R$. Table
2.1 shows three equiprobable spot price scenarios, that lead to three possible
financial outcomes for the contract holders in a specific date of the delivery
period.
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Chapter 2. Principles of Energy Trading 21

Table 2.1: Illustrative example of physically delivered forward contract financial
outcome

Scenario
Spot Price

(R$/MWh)
Buyer Seller

1 300

Disburse: -160 R$ Disburse: -300 R$

Income: – Income: +160 R$

Outcome: -160 R$ Outcome: -140 R$

2 100

Disburse: -160 R$ Disburse: -100 R$

Income: – Income: +160 R$

Outcome: -160 R$ Outcome: +60 R$

3 50

Disburse: -160 R$ Disburse: -50 R$

Income: – Income: +160 R$

Outcome: -160 R$ Outcome: +110 R$

In this case, the buyer worked as a hedger, by paying a risk-free amount
(160 R$) for the energy consumed. Therefore, he was able to hedge against
the scenario in which the spot price assumes a high value of 300 R$/MWh.
Meanwhile, the seller acted as a speculator, since he believed spot prices would
lower and he would therefore profit from buying energy in the short term
market to sell it for a higher price.

Another possibility is to trade a cash-settled forward contract, in which
negotiation relies strictly on price, with no necessary link to physical energy
delivery. Therefore, they are also known as Non-Deliverable Forwards (NDF).
This is common in negotiations between agents that do not actually need to
receive the energy, such as traders and financial institutions, or generators and
consumers operating with the objective of providing liquidity.

In NDFs, the settlements are calculated as the difference between the
negotiated contract price and the actual spot price upon the expiration date
of the transaction. Therefore, the amount to be paid by the buyer to the seller
is (F − S)Q if F ≥ S, or to be received is (S − F )Q if F ≤ S.

Table 2.2 illustrates the same situation as the one described in subsection
2.2.1, in which two agents agree on settling a 1 MWh contract for 160 R$.
However, in this case, the holders have purely financial objectives and therefore
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choose to negotiate a NDF.

Table 2.2: Illustrative example of NDF financial outcome

Scenario
Spot Price

(R$/MWh)
Buyer Seller

1 300
Disburse: – Disburse: -140 R$

Income: +140 R$ Income: –

2 100
Disburse: -60 R$ Disburse: –

Income: – Income: +60 R$

3 50
Disburse: -110 R$ Disburse: –

Income: – Income: +110 R$

Note that the settlement of these derivatives involves a smaller financial
disbursement if compared to conventional forwards with physical delivery. This
characteristic brings a series of benefits to the involved parties and the market
itself, such as less cash requirements, greater flexibility in risk management
and, ultimately, increased market liquidity.

2.2.2
Futures

A lot like forward contracts, energy futures are agreements between
two parties to buy or sell energy at a certain time in the future for a
certain price. However, unlike forwards, they have standardized features and
are traded under “exchange-traded-markets” or “organized counters”. These
markets connect buyers and sellers that do not necessarily know each other.
Futures can be either cash-settled or physically delivery, as the exchange
specify the conditions for the contracts they cover.

When traded in an exchange, the parties have the benefit of a clearing
house to reduce credit risk. The clearing house mitigates risks of counterparty
defaults by requiring both traders to deposit funds (known as margins) to
ensure that they will comply with their obligations. Furthermore, differently
from forwards, futures are marked-to-market daily, which means that there are
daily settlements until the end of the contract.
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2.3
Overview of the Brazilian Electricity Market

The design of the power market in Brazil is heavily influenced by the
presence of abundant hydropower. Among the 171 GW of installed capacity
(2021), approximately 64% of the energy is produced by hydroelectric plants,
while the remaining generation mix includes wind (11%), natural gas (8.8%),
biomass (8.2%), solar (2.6%), oil (2.5%), coal (1.8%), nuclear (1.2%), and
others (0.4%)[1].

Figure 2.2: Brazilian electricity matrix in 2021 [1].

In this context, a central point of the institutional model of the Brazilian
Electricity Sector is security of supply. This security is guaranteed through two
basic business model rules:

1. All consumers must have 100% of their load covered by contracts.

2. All contracts must have a physical ballast of generation.

The requirement of 100% of contracting with physical ballast creates
a “connection” between demand growth and the entry of new equipment. To
conform with rule no. 2, the Ministry of Energy and Mines (MME) assigns each
plant an amount of energy, measured in averageMW (avgMW or MWh/h),
that corresponds to their sustainable production capacity. This value is known
as Physical Guarantee - PhG. In general, it reflects each plant’s energy
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contribution during the dry periods. The PhG (hereinafter denominated as
Firm Energy Certificate) also corresponds to the maximum amount of energy
that can be sold through contracts.

In July 2004, the law decree 5.163 set the basis for electricity trading in
Brazil as it established two contracting market environments: (i) Regulated
and (ii) Free Market. The Regulated Contracting Environment is the market
segment in which electrical energy purchase and sale operations are carried
out between selling and distribution agents, through energy auctions. In
this environment, long-term contracts (between 20 and 30 years) are signed,
facilitating project financing and therefore guide the generation expansion in
Brazil. Besides, these auctions seek to allocate systemic risks (difficult for the
seller to manage) to consumers.

On the other hand, in the Free Contracting Environment, contracts
are bilaterally negotiated among generators, traders, and large consumers
who choose to participate. Thus, consumers can freely negotiate contractual
conditions with their suppliers, such as price, terms, and flexibilities. This
environment grants autonomy for portfolio and risk management. Currently,
it corresponds to approximately 35% of the total electricity consumption in the
National Interconnected System [29]. Furthermore, the market trend indicates
an increasingly accentuated growth of this share, due to the more competitive
prices as opposed to the regulated ones.

Regarding the spot market, since the Brazilian system is centrally
dispatched and cost-based, the spot price is calculated by means of the
marginal cost of operation and represents the expected value of the water
opportunity. According to the aforementioned law decree, since 2004 the spot
prices in Brazil have been calculated using weekly intervals for three load
tiers: peak, shoulder and valley, using a centralized computer-aided economic
dispatch. In July 2017, the Public Consultation 033/2018 (CP033) proposed
measures for the modernization and expansion of the electricity market. One of
the main recommendations of CP033 was the increase of operation’s and price’s
time granularity, to extend short-term flexibility. This was motivated by recent
needs brought by increasing solar and wind shares and hydro’s changing role
in system expansion due to socio-environmental constraints of building new
large hydro reservoirs [26]. In July 2019, MME decreed through the ordinance
no. 301 the beginning of hourly operations starting in 2020, as well as hourly
prices by 2021, which are currently in effect.

Driven by these market improvements and the continuously growing
number of consumers in the Free Market, the Brazilian Stock Exchange
(B3) and the Brazilian Power Trading Counter (BBCE) have recently started
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offering NDFs. Some of the advantages of these products, as noted by BBCE,
include the fact that there is no need for physical delivery, and therefore no
exposure to the ballast penalty; regulatory stability of the financial market, and
a trading risk that is limited to the difference between the spot and contract
price.

In this context, even though this dissertation focuses on conventional
forward trading with physical delivery, as they still are the most “standard”
and liquid derivatives in the Brazilian market, the same framework can be used
for NDFs.
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3
Uncertainty Modeling

Dealing with uncertainties is a challenging task, as, in practice, the lim-
ited knowledge about the future requires planners to make many assump-
tions. In energy portfolio models, we highlight two types of uncertainties: (i)
short-term uncertainties associated to plant generation and spot prices and (ii)
long-term uncertainties associated with strategic contracting decisions and the
future evolution of derivative prices.

To further complicate the matter, these aspects do not necessarily have
the same time scale and level of unpredictability, and therefore require differ-
ent modeling techniques. For these reasons, portfolio optimization problems
usually address a single type of uncertainty. On the one hand, two-stage ap-
proaches such as [6–8] are restricted to short-term uncertainty effects, while
multistage works [9, 10] tend to focus on long-term.

In this chapter, we explore the differences between the two uncertainties
and how they impact the trading strategy. Finally, we propose a method for
combining both uncertainty sources into a multistage stochastic problem.

3.1
Short-term Uncertainties

Usually, short-term uncertainties are either represented using parametric
or non-parametric approaches. While the former assumes an estimated prob-
ability distribution for the studied phenomenon, the latter allows for the rep-
resentation of more complex systems, through scenario simulation techniques.
One of the most traditional approaches in stochastic optimization is the well-
known Monte Carlo simulation [30]. This method is particularly appealing
because it is easy to implement and remains computationally tractable for
high dimensional problems. More recently, robust optimization has also gained
ground on this matter [6].

In this subsection, we propose a procedure to generate a finite number of
correlated inflow, renewable production, spot price and dispatch scenarios to
supply a deterministic demand, based on relevant works. However, it is worth
mentioning that the functioning of the decision support tool suggested in this
dissertation is not limited to the following simulation method. Therefore, any
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other exogenous production and price simulation procedures can be used as
input data to the tool, even though we highlight the importance of maintaining
the cross dependencies between these variables.

3.1.1
Inflow Forecasting and Renewable Generation

For predominant hydrothermal systems such as Brazil’s, hydrology is
the basis to price formation. Fortunately, a log-normal can usually adequately
represent the marginal distribution of inflows [30,31], while Monte Carlo based
methods can be employed for scenario simulation. In this work, a periodic
autoregressive model (PAR) [32] is used to reproduce the one officially operated
in Brazil [33].

To select the most suitable model when it comes to renewable output
prediction, the following aspects were considered:

– The framework must deliver accurate extreme scenarios, accounting for
spatial and temporal correlations, which are of great importance in risk
analysis;

– Non-Gaussian distributions must have consistent treatment, as it can
significantly change tail risk scenarios.

For those reasons, we make use of the non-parametric Bayesian network
method proposed in [31], to create synthetic hourly generation scenarios, and
consider not only correlations between wind and solar units themselves, but
also between wind speed, radiation, and inflows.

A Bayesian network is defined as a directed graphical model that can
compactly represent the joint probability distribution of n-dimensional vari-
ables, using strictly the most important correlations between variables. Since
the non-parametric approach does not assume any kind of shape for the dis-
tribution, the method will infer the distribution function from the available
data. This allows a better fit for stochastic processes that are not correctly
characterized by known distributions.

The authors in [31] detail the procedure used to obtain the forecasts as
follows:

1. Estimate a PAR(p) model for monthly/weekly inflow forecasting and
generate inflow scenarios assuming a log-normal marginal distribution.
Sampling can be done through Monte-Carlo based methods;

2. For each renewable site, estimate the original distribution function by
fitting the Kernel Density Estimation [34] from the historical data;
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3. Transform the non-parametric marginal distributions into series of nor-
mally distributed random variables through a method that is equivalent
to implicitly choosing a Gaussian copula [35] for the random variables.

4. Apply the Bayesian network into the historical normalized data to deter-
mine the statistical dependence between variables and build regressive
models in the form of yt = a0 + ∑

j ajxj,t + ε, where y is a renewable
site and xi can be either a different renewable site or an inflow se-
ries. Note that the renewable data must be aggregated into the same
monthly/weekly time granularity as the inflows;

5. Estimate the Bayesian network parameters, using the statistical depen-
dency structure found in (4);

6. Forecast monthly/weekly renewable scenarios using the models built in
(5).

7. Transform the normal variables back into the original distribution by
applying an inverse integral transform;

8. Disaggregate data into hourly resolution to capture the variability of
the sources once monthly/weekly inflow and renewable scenarios have
already been forecasted. This step consists in applying a Principal
Components Analysis (PCA) decomposition in each month/week of the
aggregated historical data, resulting in a decomposition matrix for each
month/week to be applied in the generated scenarios.

The process starts (step 1) with the inflow forecast and Monte-Carlo
simulation that generates a total of |S| scenarios. Steps 2 and 3 are than used
to estimate the renewable generation distribution function from the historical
data and convert (map) it to a Gaussian form, as mandatory when working
with Bayesian networks. In steps 4-6, a Bayesian network is applied for each
renewable site. This means that, for each renewable, a regression model is fitted
after testing all possible combinations between inflows and other renewable
sites as explanatory variables and selecting the significant ones. Step 7 is than
used to restore the original distribution function, using the mapping from step
3. Finally, in step 8, the forecasted renewable generation is disaggregated into
hourly time steps using the historical data to infer the profiles. Note that by
the end of this process, there will be a set of |S| renewable generation scenarios.
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3.1.2
Market Simulation

As noted by [36], renewable generation is a fundamental aspect of
electricity spot prices in markets with high levels of penetration. Thus, to
capture essential characteristics of the price volatility increase brought by
intermittent sources, we employ the official SDDP [27] methodology used in
Brazil (and other hydro-dominated countries), considering a highly renewable
expansion plan proposed by experts (refer to Section 2.1). The SDDP simulates
the optimal operation of hydros and thermoelectric units as a function of
simulated scenarios of demand and renewable injections. Another output is the
marginal operational cost, which is proxy for spot prices. The SDDP run also
returns a set of coherently and independently generated scenarios (following a
Monte-Carlo approach) containing spot prices and renewable units’ generation.
For an interested reader, we refer to [37] for further details.

3.1.3
Impacts of Short-term Uncertainties in Revenue

Figure 3.1 shows hourly output profiles of solar and wind plants in the
Northeastern area of Brazil. In this example, both plants produce, on average,
2.4 GWh in one day (or 100 avgMW), and have their output concentrated
during the mornings and afternoons (6AM - 6PM).

Moreover, three spot profiles are illustrated in red, all with a daily average
of 150 R$/MWh. The flat curve represents a situation where spot prices are
not hourly defined. The dotted curve, on the other hand, exhibits the spot
price (generated using SDDP) for a low renewable penetration scenario, in
which prices tend to increase in peak load hours. Finally, the dashed curve
represents a high renewable penetration setting (object of this study), and
clearly shows a price drop during the day. This phenomenon is caused by the
over-generation of solar energy when the sun is shining, which decreases the
net demand during these hours, originating a profile known as “duck curve”,
which is already observed in systems such as California’s.

Table 3.1 shows the impact of each spot price profile to the daily spot
clearing of a solar and a wind producer that have a 100 avgMW flat energy
delivery commitment. Naturally, the flat profile has a null correlation factor
to the plant’s production and, therefore, does not result in daily gains or
expenses in the spot market. In the low renewable penetration setting, positive
correlation between production and prices is demonstrated for both wind
and solar units. This means that production tends to be higher when prices
are high, which leads to gains in the spot market. Nevertheless, at the high

DBD
PUC-Rio - Certificação Digital Nº 1812643/CA



Chapter 3. Uncertainty Modeling 30

Figure 3.1: Hourly spot price and generation profiles.

Table 3.1: Impact of spot price and renewable production correlation in daily
spot clearing

Prices

Flat Low Renewable High Renewable

Corr.

factor

Daily spot

clearing

(kR$)

Corr.

factor

Daily spot

clearing

(kR$)

Corr.

factor

Daily spot

clearing

(kR$)

Wind 0.00 0.00 0.68 1.82 -0.72 -4.22

Solar 0.00 0.00 0.67 10.99 -0.74 -26.36

renewable penetration setting, the correlation factor is negative. This means
that the generator would have to purchase energy in the spot market when
prices are high to comply with his contractual obligations. Conversely, excess
energy selling would occur when prices are low, leading to negative daily spot
clearings.

3.2
Long-term Uncertainties

Trading decisions are by no means static. As time goes on and new
information becomes available, decisions that were made in the past can be
reassessed, or previously postponed decisions can, finally, be made. Thus, when
evaluating a trading strategy, it is very important to consider this timing
flexibility. The more uncertain the future is, the more valuable this flexibility
becomes. For instance, if a trading company has to buy a certain volume of
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power, the energy portfolio manager has essentially two options: (i) either
purchase the required energy today at current market prices or (ii) postpone
the purchase to a future date (see Figure 3.2).

Figure 3.2: “Here and now” versus “wait and see” strategies.

The optimal decision will depend on the expected evolution of power
prices and on the manager’s risk aversion profile. On one hand, the “wait-and-
see” strategy allows the manager to have more information before locking
in a price. On the other hand, the actual final price may end up being
higher than it would have been if the manager had previously bought the
energy. Therefore, it’s very important to weigh the risks against the benefits
when timing the decision. In situations like these, a common approach in the
stochastic framework is to model the outcome uncertainty through a decision
tree [11, 15, 16, 22, 38]. Other approaches such as price lattices [9] and Markov
chains are also found in literature [39].

3.2.1
Impacts of Long-term Uncertainties in Revenue

Suppose that a trading company needs to buy energy for the following
month. It has searched the market for supply contracts, and has found that
the available options are:

1. Sign a contract today locking in a price of 215 R$/MWh.

2. Wait a little longer to go after a supply contract.

Since it is not possible to know in advance how market prices will be like
in the future, if the manager chooses the second option there is a real possibility
that power prices will rise and that he will end up spending more than he would
have if he were to sign the supply contract today, for 215 R$/MWh. On the
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other hand, it’s also possible that prices may fall, and that he will end up
paying less.

In order to evaluate both possibilities, the manager decides to build a
decision tree to represent price evolutions between today and the following
month in three distinct and equiprobable categories: high, medium and low. A
crucial point when building the tree is the estimation of prices at each node,
i.e., what would be the contract prices for each possible path realization.

Let’s suppose, in this example, that the manager estimates that:

– Depending on “bad” weather conditions (low radiation, wind speed or
hydrology), prices can rise up to 25%;

– On average, prices will fall slightly by 7%;

– If weather conditions are good, then prices will fall by 32%.

Hence, the manager has to decide between signing a contract today,
for 215 R$/MWh; or waiting and finding prices of {268, 200, 146} R$/MWh.
Assuming that the manager is risk neutral and that his objective is to minimize
the energy acquisition cost’s expected value, then the optimal decision is to
wait to purchase the energy:

E[wait] = 2681
3 + 2001

3 + 1461
3 = 204.87R$

Note that the expected value of strategy 2 is lower than the expected
value of strategy 1 (buy for 215 R$ in advance). Thus, he would choose to wait
to sign a supply contract.

3.3
Combining Uncertainties: a Proposed Framework

In this section we propose a framework in which the correlations between
inflow forecasts, renewable generation, spot and contract prices are accounted
for by means of interconnected long- and short-term decision trees.

3.3.1
Multi-scale Scenario Tree

As opposed to the previously reported approaches, in this work the
scenario tree structure is built to preserve all original independently generated
(random) scenarios of spot prices and renewable generation from Section
3.1. This is done to characterize intra-stage short-term uncertainty. In this
subsection we describe the procedure to obtain a dual scale scenario tree
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structure (with hourly and weekly uncertainties), similar to the one in [22],
that allows accounting for both strategic and operational levels.

The following basic definitions are used in this article for the specification
of a scenario tree topology:

• Scenarios: comprise possible time-dependent realizations for the short-
term uncertain parameters. Their values are obtained under the assump-
tions of Section 3.1 and depicted in Figure 3.3 as dashed blue wavy time
series. Mathematically, they are represented by s ∈ S.

• Nodes: represent a moment in time and level of conditional informa-
tion in which a contracting (strategic) decision can be made (except the
leaves). They are also referred to as clusters, or system states, and are
depicted in Figure 3.3 as gray rectangles. They are obtained through a
spot-price-based clusterization process of the scenarios applied in each
stage according to the steps provided below in this Section. Additionally,
in each node conditional values for forward prices are obtained follow-
ing the procedure described in Section 3.3.2. Mathematically, they are
represented by n ∈ N and contain a set of scenarios Sn.

• Paths: represent the information-revelation process characterized by a
filtration of the scenarios through time. This filtration is defined by the
clusterization process describing how child nodes are obtained, thereby
representing the structure of the tree. Paths are represented by the thick
black lines connecting nodes in Figure 3.3. Mathematically, each path is
characterized by the set of scenarios Sn in a given leaf node n ∈ L. Note
that L is the subset of nodes NT ⊂ N associated to the leaves.

The scenario tree used in this work is generated for a finite planning
horizon over t = 1, ..., T stages with weekly time steps. Each node contains
information of generating units’ outputs and spot prices in hourly resolution
for the whole week, as well as weekly forward prices for all contracts.

Once a large number of scenarios S is simulated, a clusterization
algorithm (i.e., K-means [40] or quicksort) is used to split scenarios into k

subsets that share similarities for each stage. In this work we use weekly average
spot prices as the similarity metric. The split of the scenarios in the nodes that
form our scenario tree is presented in the following Algorithm:

The proposed Algorithm 1 does not require the translation of grouped
scenarios into a single pivot scenario (e.g. obtained through the average or other
scenario reduction techniques [39,41]), but considers the scenario’s probability
distribution function at each node. Therefore, even though scenarios are
grouped to form tree paths, the full set of simulated scenarios S will still be
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Figure 3.3: Tree paths and scenario distributions by cluster (node).

Algorithm 1 Scenario tree (S, k ← input)
1: Initialization
2: for t ∈ T , s ∈ S calculate: Ss,t ←

∑
h∈Ht

Ss,h

168
3: n← 1, S1 ← S, N1 ← {1}, Nt≥2 ← ∅, and N ← N1
4: for t ∈ T , n ∈ Nt do
5: run clusterization(Sn, {Ss,t}s∈Sn , k)
6: Store clusters as Sm for m = |N |+1, ..., |N |+k
7: Nt+1 ← Nt+1 ∪ {|N |+1, ..., |N |+k}
8: N ← N ∪ {|N |+1, ..., |N |+k}
9: end for

10: L ← NT
11: Return N , {Nt}t∈T ,L, {Sn}n∈N

considered, which means that there will be no loss of information. Hence, this
approach maintains the statistical properties of both strategic and operational
uncertainty data sets and ensures that all extreme scenarios are analyzed,
which is essential in risk analysis.

3.3.2
Forward Prices

Contracts are the basis of the agents’ strategy in the electricity market
for both the sales (generators) and the purchase (consumers and traders)
segments.

In our model, forward contracts are defined by three main parameters,
namely: the negotiation (decision) stage, τc, and the initial, τ startc , and final,
τ endc , stages of the delivery period1. Considering the tree structure in Figure 3.3,

1Note that in practice, a given product, e.g., forward contract with a given initial and final
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for contracts negotiated in t = τc = 1, prices are specified for a single node. On
the other hand, contracts with parameter τc = 2 exhibit two different prices,
as there are two nodes in the negotiation stage.

Conventional forward pricing approaches consider two key components:
spot price expectations and risk premiums [42–44], which can be expressed by

Ft = E[Ss,τ |Infot] + ∆t (3-1)

for the delivery period τ of the forward. The latter component characterizes
the bias due to liquidity and agents’ risk aversions in the market. Since prices
in our model are defined for each node of the scenario tree, the first price
component is obtained through the expected spot prices foreseen strictly on
the scenarios contained in that node, i.e, according to:

E[Ss,t|Sn] =
∑
s∈Sn

Ps∑
s′∈Sn

Ps′
Ss,t ∀n ∈ N . (3-2)

The total contract price Fc,n is then given by (3-2) plus an exogenously
determined ∆t. In our study, we calculated risk premiums using a simple linear
regression of historical forwards and spot prices [45].

delivery period, can be negotiated at different periods by different prices. To consider this
possibility in our model, we assume different contracts with the same initial and final delivery
periods for each possible negotiation stage, each of which considering the correspondent
forward price.
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4
Risk Aversion

4.1
Characterizing Risks

Even though agents aim to maximize expected revenue, most of the
generators and retailers are risk averse. This means that decisions that involve
a high level of risk may not be acceptable even if their expected return is higher
than it would be with other options.

Although it is extremely common to assume risk and uncertainty syn-
onymously, there is a significant difference between the two definitions. More
specifically, risks are consequences of uncertainties. While the latter refers to
situations of limited knowledge, in which it is not possible to determine with
certainty the future value of one or more quantities, the former comes from an
uncertainty circumstance that can lead to undesirable results.

In chapter 3 short- and long-term uncertainties are characterized as the
lack of knowledge in future spot prices, generation, and derivative prices.
Hence, risks are seen in situations of extreme market prices and plant outputs
that result in low or negative outcomes.

Among the intrinsic risks to the energy trading activity, we highlight:

• Market risks: include price-volume risks and are consequences of price
and production uncertainty and volatility.

• Operational risks: associated with uncertainties in equipment availability,
fuel availability, etc.

• Regulatory risks: associated with changes in regulation that may cause
financial losses.

• Credit risks: caused by counterparty defaults.

Note that we are able to capture the sensitivity to weather variability and
operational uncertainties by simulating extreme production scenarios, similar
to what is done in [46]. Furthermore, by applying financial risk constraints to
the problem it is possible to prevent market risks. As for the regulatory and
credit risks, they are hardly quantifiable and therefore are not considered at
the moment.
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4.2
Risk Measures

A risk measure is a function that associates a given random variable (e.g.
profit) with a real number characterizing the risk. As previously mentioned,
profit scenarios forecasting is intended to assist decision making in order to
avoid significant losses, having great importance in the management of personal
and company risk. In this context, the probability and extent of losses should
be estimated in two steps: (i) modeling of the distribution of future profits and
losses (i.e., future returns from portfolios or assets) and the (ii) measuring of
the financial risks associated to this distribution.

The most commonly used risk measures in the electricity market are
defined and formulated in [4], namely:

1. Variance/mean-variance
2. Shortfall probability
3. Downside risk
4. Value-at-Risk (VaR)
5. Conditional-Value-at-Risk (CVaR)

The variance measure was firstly proposed in risk management problems
by the notorious work of Markowitz [3]. This is a statistical measurement that
determines the degree of variability (dispersion) from the average or mean
of a random variable. Therefore, a large variance indicates a high risk of
experiencing revenues far from the expected one, regardless of whether they
represent positive or negative deviations. Nevertheless, an agent is usually
worried about low profit scenarios, while positive deviations from the expected
value are actually desirable.

As a solution to overcome the drawbacks of equally penalizing high and
low profit scenarios other measures were introduced.

The shortfall probability is a linear measure that characterizes risk as
the probability of the profit being smaller of a given pre-fixed target value κ.
Likewise, the downside risk quantifies the expected value of the profit being
below that target. Even though these are defined by [4] as easily implementable,
they are not coherent risk measures, which means that they do not fulfill at
least one of the four desirable properties presented by Artzner et al. in [47],
them being:

1. Translation invariance:
ρ(X + c) = ρ(X)− c
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Interpretation: adding a risk free asset c to a portfolio with risky assets
X reduces risk by the same amount.

2. Subadditivity:
ρ(X + Y ) ≤ ρ(X) + ρ(Y )

Interpretation: The portfolio risk should be less or equal to the risk of
its individual components. In other words, the risk measure should not
penalize diversification.

3. Positive homogeneity:
ρ(kX) = kX

Interpretation: If an asset X is linearly increased or decreased, the
resulting risk will also be, by the same factor k.

4. Monotonicity:
ifX ≤ Y, ρ(X) ≥ ρ(Y )

Interpretation: If an asset Y dominates an asset X, Y is less risky.

Similarly to the shortfall probability, the Value-at-Risk accounts for
risks according to a pre-fixed threshold value. However, instead of choosing
a cutoff outcome, the threshold is defined by a quantile of the random variable
distribution, (1 − α)100%. For instance, if α is equal to 95%, it means that
there is a 95% chance in obtaining an outcome that is higher or equal to the
VaR value. Note that both of these measures are blind to fat tails beyond the
values of κ or VaR. Moreover, the problem of non-coherence persists in the
VaR metric, as it does not meet the subadditivity property (except in cases of
elliptically distributed outcomes).

Finally, the Conditional Value-at-Risk, calculated as the average of the
(1 − α)100% worst scenarios, was suggested as a coherent alternative to the
VaR. This makes the CVaR one of the main and most promising risk metrics
to be used in stochastic programming, as its convex function – resulting from
the combination of subadditivity and positive homogeneity notions – can be
condensed into a simple linear programming formula proposed by Rockafellar
and Uryasev in [24]. Additionally, it can be seen from Figure 4.1 that the
CVaR overcomes VaR limitations by indicating, in a more appropriate way,
the potential of losses that exceed the confidence interval (1−α)100%, defined
when calculating the average of losses that exceed the VaR value.
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Figure 4.1: VaR and CVaR risk metrics applied to illustrative outcome density
function.

4.3
Time-consistency in Risk Averse Dynamic Stochastic Programming

According to [12], strategies are time consistent if the future planned
decisions continue to be optimal as the world evolves to one of the predicted
paths. Therefore, “at every system state, optimal decisions should not depend
on scenarios which we already know cannot happen in the future.” Even though
this may seem like a straightforward concept, many risk constrained approaches
widely used in stochastic optimization, such as the maximization of CVaR, can
lose time consistency once dynamic decisions are introduced.

In [13], a practical example of a time inconsistent policy is given. In such
case, an investor wants to maximize the risk-return trade-off of a dynamic
two-asset allocation problem. To do so, he uses a decision tree approach
and constructs a linear stochastic programming problem that maximizes the
equally weighted convex combination between the average return and the
CVaR.

The first asset considered by the agent, indexed by i = 1, is risk
free and its return assumes a null value at every system state, i.e, F1,s,t =
0 ∀s ∈ S = {1, 2, 3, 4},∀t ∈ T = {1, 2}. The second one is assumed to have
independent and identically distributed returns according to the graphic
representation in Figure 4.2.

Once the optimization problem is solved using α = 75%, the following as-
set allocation solution xi,s,t ∀i ∈ {1, 2}, s ∈ S, t ∈ T is obtained, in percentage
values of the total investment:
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Figure 4.2: Return tree for asset 2.

x1,s,t =



50%, ∀t = 1, s ∈ S

0%, ∀t = 2, s ∈ {1, 2}

100%, ∀t = 2, s ∈ {3, 4}

x2,s,t =



50%, ∀t = 1, s ∈ S

100%, ∀t = 2, s ∈ {1, 2}

0%, ∀t = 2, s ∈ {3, 4}

At node 1, it is optimal to invest equally in assets 1 and 2, while at node
2, the full investment should be made in the risky asset. Finally, at node 3,
the model suggests to invest solely in the risk free one. Notwithstanding, the
authors aim to prove that the optimal solution would have been different if the
world actually evolved to node 2. In other words, at node 1 the future planned
decisions for node 2 are different from the ones that are actually going to be
implemented.

In fact, the optimal solution obtained when the first stage problem is run
from node 2, foreseeing strictly paths 1 and 2, is to invest everything in the
risky asset. This happens because, from t = 1, the 75%-CVaR relies in scenario
4. Then, at node 2, it is optimal to choose the investment strategy with the
highest expected return since this decision will not affect the terminal wealth
at scenario 4. This example shows that a risk-averse time inconsistent policy
may lead to risk neutral decisions at intermediate system states.

Moreover, when the problem is run using the time consistent model
proposed in the article, the first stage decision at node 1 changes to indicate
the full investment in the risk free asset. Note that this strategy is more
conservative compared to the time inconsistent one, since it considers risk
at every system state.
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4.4
Risk Policy Modeling: A Proposed Framework

Having addressed the problem of temporal consistency in risk-averse
dynamic programming, this work proposes three different time-consistent risk
constraints established by user-defined limits and directly compatible with the
decision tree approach:

1. Stage-wise α− CV aR

2. Monthly aggregated α− CV aR

3. One-period drawdown

Figure 4.3: Time-consistent risk constraints.

Constraint (1) can be interpreted minimum revenue allowed by stage
(week) and estimated as an average of the α% worst-case revenue scenarios in
each tree path. This constraint is very common in stochastic problems, how-
ever, it can easily lose time consistency when applied in dynamic programming.
Note that, if the α − CV aR is calculated based on the full set of scenarios S
by stage, decisions in a specific system state could be affected by extreme
scenarios in an opposite state and path.

However, if the constraint is applied not only to every stage, but to the
probability distribution of scenarios contained at each system state n, time
consistency is guaranteed in the analysis. In this case, as each node contains
only a subset of scenarios Sn, excluding the ones that are already known not
to happen in the future, future planned decisions will continue to be optimal
as the world evolves. For instance, suppose the market follows in a high price
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path in t = 2. In this setting, decisions made in this stage will not be affected
by limits at any future state of the low price trajectory.

The same logic can be extended to the monthly aggregated α − CV aR
constraint, which is similar to (1), but considers the present value of the full
horizon (month) per path of the tree. In such case, the number of constraints
will depend in the number of trajectories (or leaf nodes). Furthermore, it is
ensured that regardless of the tree path the agent faces in the future, there will
be only an (1 − α)100% chance, or less, of an outcome under the constraint
limit.

Finally, the maximum one-period drawdown can be interpreted as the
maximum shortfall allowed between stages, and is used to reduce revenue
volatility. Although it is not very recurrent in the electricity trading literature,
in practical life it is one of the most widely quoted measures within the universe
of hedge funds and commodity trading advisors [48]. Moreover, while it fails
to satisfy the translation invariance and monotonicity axioms, it is a convex
function, which allows for a linear programming representation. Unlike the
others, this constraint already has a “time consistent nature”, as it is applied
to each independent scenario.

These are sound and intuitive risk policies, as they preclude abrupt short-
falls, not only in an aggregate manner, but stage- and interstage-wise, which
is crucial to maintain companies’ cash flow stability and avoid bankruptcy.
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5
Portfolio Optimization Problem

The proposed model is cast as a multistage stochastic linear program,
driven by the maximization of the expected agent revenue and subject to time-
consistent risk constraints as follows:

Maximize
xc,n,rs,t,e

lg
s,t,e

sh
s,t,

zw
n ,z

l
n,δ

w
s,t,δ

l
s

∑
t∈T

∑
s∈S

Psrs,t (5-1)

Subject to bounds and revenue constraints:

0 ≤ xc,n ≤ 1 ∀c ∈ C,∀n ∈ Nτc (5-2)

rs,t =
∑
h∈Ht

[∑
i∈U

Gi,s,h +
∑

c∈Cbuy

xc,n(s,τc)Qc,h

−
∑

c∈Csell

xc,n(s,τc)Qc,h

]
Ss,h

+
∑

c∈Csell

xc,n(s,τc)Fc,n(s,τc)
∑
h∈Ht

Qc,h

−
∑

c∈Cbuy

xc,n(s,τc)Fc,n(s,τc)
∑
h∈Ht

Qc,h −
∑
i∈U

∑
h∈Ht

Gi,s,hCi

∀s ∈ S,∀t ∈ T (5-3)

Prevent short selling:

elgs,t =
∑
h∈Ht

∑
i∈U

Ei,h +
∑

c∈Cbuy

xc,n(s,τc)
∑
h∈Ht

Qc,h ∀s ∈ S,∀t ∈ T (5-4)

eshs,t =
∑

c∈Csell

xc,n(s,τc)
∑
h∈Ht

Qc,h ∀s ∈ S,∀t ∈ T (5-5)

elgs,t − eshs,t ≥ 0 ∀s ∈ S,∀t ∈ T (5-6)

Risk constraints:
i. Stage-wise weekly CVaR (W CVaR)

δws,t ≥ 0 ∀s ∈ S,∀t ∈ T (5-7)

zwn −
1

1− α
∑
s∈Sn

Ps∑
s′∈Sn

Ps′
δs,tn ≥ Rw

min : λn ∀n ∈ N (5-8)

δws,t ≥ zwn(s,t) − rs,t ∀s ∈ S,∀t ∈ T (5-9)
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ii. Monthly aggregated CVaR (M CVaR)

δls ≥ 0 ∀s ∈ S (5-10)

zln −
1

1− α
∑
s∈Sn

Ps∑
s′∈Sn

Ps′
δls ≥ Rl

min : γn ∀n ∈ L (5-11)

δls ≥ zln(s,T ) −
∑
t∈T

rs,t ∀s ∈ S (5-12)

iii.One-period maximum drawdown

rs,t−1 − rs,t ≤ θ : ηs,t ∀s ∈ S,∀t ∈ {2..T} (5-13)

The objective function (5-1) maximizes the agent’s average income over
the month. Constraint (5-2) sets the decision variable that defines the share
xc,n of each contract c. Note that this variable is set exclusively for nodes in
the settlement stage τc of the respective contract. Therefore, for each node of
the tree, each contract has a single decision variable xc,n that applies to all
scenarios passing through that node. This ensures non-antecipative decisions.

In (5-3), the agent’s net revenue rs,t is determined by the sum of the
wholesales market settlement plus fixed revenue of selling contracts, minus
the costs of buying contracts and generating units. Purchases and sales in
the wholesales market depend on the shortage and excess of energy in each
scenario s ∈ S and hour h ∈ H. In other words, if the total generation and
purchased contract amounts are greater than the total amount sold through
contracts, this excess is cleared in the spot market. Likewise, energy shortages
are cleared as purchases in the spot market. It is worth highlighting that even
though contract decisions are made per node, i.e., enforced for all scenarios
in Sn, revenues are computed for each scenario. In this context, the statistical
properties (and extreme scenarios characterization) of the original data set are
preserved.

Because we assume that the trading company uses forward contracts for
hedging purposes and not for speculation, constraints (5-4)–(5-6) prevent short
selling, i.e., the total generating units’ firm energy certificates and contract
purchases must be greater or equal to the total energy sold through contracts.

Finally, constraints (5-7)–(5-13) emulate the agent’s risk profile through
financial limits. Using Rockafeller’s linear formulation for the CVaR applied
to the revenues (see [5]), constraint (5-9) (and the non-negative bounds (5-7))
makes δws,t to play the role of positive piecewise-linear truncation function.
In this context, according to [24], in the optimal solution, zwn represents the
(1 − α)–quantile of the net revenue in each node. Note that the α − CV aR
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constraint (5-8) is adapted to the filtration process induced by the tree
structure. Thus, this risk constraint is calculated based on the conditional
probability distribution formed by the subset of scenarios Sn at each node.
In this context, this constraint is limiting the conditional average of the
(1 − α)100% worst scenarios to be greater or equal to Rw

min for every node
of the tree. Constraints (5-10)–(5-12) follow the exact same logic, but are
extended to the accumulated net revenue (sum of rs,t) at each leaf node. In
this case, (5-11) is limiting the average of the (1− α)100% worst scenarios to
be greater or equal to Rl

min for every path in the tree. Therefore, regardless
of the path the agent faces, there will be only an (1− α)100% chance, or less,
of observing a net revenue lower than Rl

min. Note that Rw
min and Rl

min can
also be defined by node or leaf, to represent risk control policies with dynamic
limits. Nevertheless, for the sake of simplicity, we have chosen to represent
fixed limits. Finally, the maximum one-period drawdown is limited by θ in
constraint (5-13).
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6
Performance Measure

6.1
Motivation

In a real-life situation, a trader may be confronted with a variety of
strategy possibilities, that do not necessarily comply with the company’s risk
policy, generally defined by a set of risk constraints. In this setting, such
company may wish to assess the value of a given strategy or portfolio according
to its risk policy. Although this can be a simple task under expected utility
framework or when optimizing CVaR-based metrics in the objective function
(see [49] for a theoretical example linking CVaR and certainty equivalents, [13]
for the multistage case where nested CVaR metrics are used, and for [7] and [8]
for recent applications), it is not trivial when CVaR constraints are considered.
Nevertheless, once financial limits are imposed, it is worth extracting a
correspondent preference functional compatible with the optimization problem
used to select the best contracting strategy.

The definition of such a metric allows evaluating different solutions,
e.g., obtained with other models and thereby possibly not attending to the
agent’s risk limits, under a single viewpoint consistent with the preference
induced by the optimization-based decision model. To this matter, the measure
must receive a given stochastic stream flow, parameterized by a given set of
contracting decisions, and be representative of the following key aspects of the
optimization problem: i) the degree of infeasibility and ii) the performance in
terms of objective function. In this case, for instance, portfolios with higher
expected incomes and the same degree of infeasibility should be preferable
to those with worse expected incomes. Additionally, the preference functional
should give more value to the portfolio selected as optimal by its underlying
optimization problem, i.e., the preference of the optimal portfolio must be
maximal among all possible portfolios.
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6.2
Preference Functional

To formalize the process of obtaining such a functional, the maximum
revenue problem with stage-wise risk constraints is described in a compact
manner as follows:

Maximize
x

∑
t∈T

E [rt(x, ξs,t)] (6-1)

subject to:

Axn ≤ b ∀n ∈ N (6-2)

ρ[rt(x, ξs,t)|Sn] ≥ Rw
min : πn ∀t ∈ T , n ∈ Nt. (6-3)

In the compact formulation, constraints (5-2)–(5-6) from the original
problem are represented by (6-2). The stage-wise CVaR constraints in (5-7)–
(5-9) are denoted as (6-3). For the sake of simplicity and didactic purposes,
we omit the other two sets of risk constraints (5-10)–(5-13) in the compact
formulation. Notwithstanding, as the developments carried out in this section
apply to any set of linear constraints, the extension of these results to consider
constraints (5-10)–(5-13) are straightforward. Thus, we can write the following
penalized problem, conveniently considering an exact penalization for the risk
constraint (6-3):

Maximizex,ν

∑
t∈T

E [rt(x, ξs,t)]−
∑
n∈N

λnνn (6-4)

subject to:

Ax ≤ b ∀n ∈ N (6-5)

νn ≥ 0 ∀n ∈ N (6-6)

ρ[rt(x, ξs,t)|Sn] + νn ≥ Rw
min ∀t ∈ T , n ∈ Nt (6-7)

whose objective function can be read as

φ(x,λ) =
∑
t∈T

[
E [rt(x, ξs,t)]−

∑
n∈Nt

λn max {Rw
min − ρ[rt(x, ξs,t)|Sn], 0}

]
(6-8)

Note that the second term of (6-8) accounts for an exact penalty term for
a cash flow violating constraints (6-3) in the original problem. However, it is
worth highlighting that for very small values of λ = [λ1, ..., λ|N |]′, φ(x,λ) could
insufficiently penalize infeasible solutions, thereby assigning higher preferences
to infeasible cash flows than to the cash flow associated with the optimal
solution of the original problem (6-1)–(6-3). Nevertheless, in order to ensure
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that φ ranks all feasible solutions (that satisfy (6-3)) as the original problem,
while keeping all infeasible solutions less preferable than any feasible solution
(emulating a hard constraint), we need to select extremely high values for the
penalty weights in λ. For a general problem, this implies using λn equal to
infinity ∀n ∈ N , which is equivalent to a perfect penalty. However, it is fair to
argue that, in practice, high-quality solutions (close to the optimal) with very
small violations are not “infinitely" worse than every feasible solution regardless
of its expected revenue. In this sense, practical approaches replace the original
problem (6-1)–(6-3) (with hard constraints) by its penalized version (6-4)–(6-7)
(with soft constraints), provided the optimal solution of the original problem
is ensured.

Aiming to define a complete preference functional1 that preserves the
optimal solution of the original problem, a lower bound for the penalty vector
λ can be found based on duality theory. To that end, note that problem
(6-4)–(6-7) only differs from (6-1)–(6-3) by a vector of artificial variables
ν = [ν1, ..., ν|N |]′, which is used to relax the risk constraints (6-3) and penalize
their violations in the objective function (see (6-4)). In this case, if the optimal
solution of the penalized problem (x∗,ν∗) is such that the reduced cost c̄(ν)

is nonpositive when evaluated with π∗ = [π∗1, ..., π∗|N |]′ (the risk-constraints’
optimal dual variables in the original problem), then x∗ is optimal for the
original problem too. This happens because, the original problem (6-1)–(6-3)
is equal to its penalized version (6-4)–(6-7) when ν∗ = [0, ..., 0]′, i.e., if ν is part
of the vector of optimal nonbasic variables. As we know that π∗ are nonpositive
(due to the side of the inequality in (6-3)), the reduced cost of ν allows us to
derive the following lower bound for λ:

c̄(ν) = −λ+ |π∗|< 0 =⇒ λ > |π∗|. (6-9)

Therefore, if we solve the original multistage problem, store π∗, and
use λ > |π∗|, we can use (6-8) to evaluate any x, even those infeasible (not
complying with the risk constraints). This will be important in our case study,
where we will compare the solution of our multistage model with the solution
obtained with a static two-stage version of it.

6.3
Comparing Static and Dynamic Solutions

The fact that static modeling fails to represent long-term uncertainties
reveals two primary differences between it and the proposed approach:

1A complete preference functional is a functional capable of assigning a preference value
to any cash flow regardless of its feasibility.
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1. Policy space: The two-stage problem has a reduced policy space, since
it is not possible to represent “wait and see” strategies. Yet, the policy
space from the two-stage problem is contained in the multistage one;

2. Future perspective: The multiple path outlook for multistage problems
result in a more restricted problem for risk averse agents.

In a risk averse setting, if a solution {rs,t} satisfies the multistage
constraint, it automatically satisfies the two-stage risk constraint. However,
the inverse is not true: if {rs,t} satisfies the two-stage risk constraint, it will
not necessarily meet the multistage one, as proven below.

Suppose {rs,t} satisfies the multistage constraint. Let’s assume, for
simplification purposes, and with no loss of generality, that rs,t is increasing in
s. So:

(1− a)−1(
∑
s∈Sn

Ps)−1 ∑
s∈Sn,1

Psrs,t ≥ Rw
min ∀n ∈ Nt, t ∈ T (6-10)

where Sn,1 is so that:∑
s∈Sn,1

Ps = (1− α)
∑
s∈Sn

Ps ∀n ∈ N (6-11)

Therefore, Sn,1 is a subset of the indexes associated with the CVaR, corre-
sponding to the set of scenarios with smaller values of rs,t, and whose sum of
corresponding probabilities is equal to (1− α).

Adding (6-10) and (6-11) along nodes n ∈ Nt, and using ∑s∈∪nSn
Ps = 1,

for each t we have:

(1− a)−1 ∑
s∈∪nSn,1

Psrs,t ≥ Rw
min (6-12)

and∑
s∈∪nSn,1

Ps = (1− α) (6-13)

Hence, the two-stage CVaR constraint is met. On the other hand, if {rs,t}
is a two-stage solution, it does not necessarily meet the multistage limits, as
illustrated in the following example.

Ex: S = {1, 2, 3, 4, 5, 6} ;S1 = {1, 2, 3} ;S2 = {4, 5, 6}
rs = {1, 2, 3, 4, 5, 6} ;α = 2/3;Rmin = 1.5.

– Two-stage constraint: CV aR = 1+2
2 = 1.5 ≥ Rmin

– Multistage constraint: CV aR1 = 1 ≤ Rmin.

Practical consequences of this issue are addressed in chapter 7.
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7
Case Study

In this section, a practical case study illustrates the applicability of the
tool with real data from the Brazilian power sector. Although this study focuses
on Brazil, other electricity markets, both centralized and liberalized, can also
be considered. Furthermore, in order to demonstrate the effectiveness and
benefits of the dynamic solution, the suggested formulation was contrasted
with the state-of-the-art static approach, similar to the one found in [5] and
[25], and different sensitivity solutions were analyzed using the performance
measure described in Section 6.

Finally, all tests were conducted using the Julia programming language
and solved with FICO Xpress 8.11, on an Intel Core i7-10510U processor at
1.80 GHz with 16 GB of RAM. The total execution time to solve for the
multistage problem was of 1.14 seconds, while the two-stage benchmark took
1.11 seconds.

7.1
Input Data

This case study considers a 160 MW wind generator in the northeastern
area (Rio Grande do Norte) of the Brazilian power system with 100 avgMW
long-term average annual generation and null unitary variable cost.

We use the framework introduced in Section 3.1 to jointly simulate a set of
200 independent scenarios of correlated renewable generation and spot prices
with hourly granularity. Figure 7.1 shows the expected generation and spot
price for the 4-week time frame used in this study. Besides the highly volatile
prices, note that price peaks coincide with moments of low generation, which
is an important characteristic of systems with high renewable penetration, as
shown in [19] and [20]. Thus, the price and quantity risk renewable generators
are subject to once inserted in this new reality is properly reflected. The
complete data set is available in [50].

To represent long-term uncertainties, a tree structure was generated
according to Section 3.3.1 using a quicksort algorithm for clustering. The 4-
stage tree framework resulted in a total of 23 nodes and 8 leaves, each leaf
containing 25 scenarios. Graphic representation can be seen in Figure 7.3. The
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Figure 7.1: Expected values of wind power generation and spot prices.

connections between the root (node 1) and leaf nodes (nodes 16 to 23) produce
eight tree paths, ordered from high to low prices, namely: “Very high", “High",
“Mid+", “Base+", “Base-", “Mid-", “Low", “Very low".

The contracting opportunities are displayed in Figure 7.2, which contains
all possibilities of forward contracting in the multistage framework, considering
different maturities, start dates, and duration (defining a delivery horizon)
within the considered month. In this figure, the circles represent the contract
negotiation date, while the dashed arrows show delivery terms. There is a
total of twenty numbered contracts, resulting in over a million (220) different
asset portfolio combinations for the following month. However, note that
in a two-stage setting, only contracts negotiated in t = 1 are available,
reducing the set of forward contracts in half as, in such approach C =
{1, 2, 3, 4, 11, 12, 13, 17, 18, 20}. It is assumed all contracts are liquid and the
negotiations are marginal and feasible to be implemented.

According to Section 3.3.2, forward prices were calculated for each node
of the tree. To do so, two approximations were used, since we are applying
this approach in a short-term horizon, for a month in weekly basis. First, we
assumed that St ≈ E[ 1

τend
c −τstart

c

∑τend
c

τ=τstart
c

Ss,τ |St] for all contracts. Second, we
used the time series of forward prices with monthly delivery period (M+0) as a
proxy for all intra-month forward prices, since these are the shortest contracts
with a significant sample size in Brazil. Based on these approximations, we
estimated the following regression model (obtaining an R2 = 0.96) for the
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Figure 7.2: Weekly and monthly forward contracts.

spread:

∆̂t = −0.07St + 15.31. (7-1)

p-value = (0.01) (0.01)

Thus, using our first approximation and the above regression, based on (3-1)
we derived the expression of forward prices ∀c ∈ C and ∀n ∈ Nτc as follows:

Fc,n = 0.93E
[

1
τ endc − τ startc

τend
c∑

τ=τstart
c

Ss,τ

∣∣∣∣∣Sn
]

+ 15.31. (7-2)

Regarding the risk-averse policy, in this case study decisions must comply
with the following risk limits: 1) stage-wise limit equal to Rw

min = 500 kR$,
with 90% confidence, in constraint (5-8), 2) a monthly aggregated limit equal
to Rl

min = 3, 000 kR$, with 90% confidence, in constraint (5-11)), and 3)
maximum one-period drawdown limit equal to θ = 300 kR$ in constraint
(5-13)).

7.2
Trading Strategy and Numerical Results

Figure 7.3(a) shows the resulting contracting strategy for each week
(t = 1, ..., 4) and tree node. The static contracting strategy obtained with
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Figure 7.3: Dynamic (a) and static (b) trading strategies under a multistage
perspective.

a two-stage version of the model is also shown in Figure 7.3(b). The static
strategy is obtained with a particularization of the tree structure, where only
one node per stage is allowed and all scenarios belong to every node. However,
both the dynamic (multistage) and the static (two-stage) contracting strategies
are then evaluated under the more realistic multistage perspective, i.e., selected
contracts and constraints are evaluated in the tree structure. Selected contracts
and their optimal volumes are shown in the captions according to their
specifications in Figure 7.2, while nodes highlighted in red indicate paths where
the multistage 90%–CVaR constraints are violated.

Table 7.1 depicts a summary of statistics from three trading strategies,
namely, the dynamic (rows 2–9), static (row 10), and uncontracted spot-based
benchmark (row 11). Columns 2 and 3 present the expected revenue and the
90%–CVaR for the whole month, columns 4 and 5 present the worst week
90%–CVaR and drawdown, respectively. In column 1, rows 2–9 label the tree
path for which the statistics relate, in the dynamic strategy case. It is clear
from the last row that the benchmark strategy, in which the trading company
relies solely on the spot market, does not comply with the risk policy.

The dynamic approach however, explores conditional information to
dynamically manage the risk through a diversified portfolio of contracts. Hence,
the agent is recommended to sell 44.75 to 54.28 avgMW of energy through
bilateral contracts, depending on the evolution of prices. From the available 100
avgMW (67200 MWh in 4 weeks), 45% is sold in contracts settled today (See
Figure 7.3, sum of C = {3, 4, 13, 18, 20} = 32 MW h

h
·336h+(52+17+19+27) MW h

h
·168h

67200 =
44.75%), 55% is left for future reassessment, and the difference between the
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Table 7.1: Statistical strategy results by path

Path
Average
Revenue
(MR$)

90%–
CVaR
(MR$)

Lowest
90%–CVaR

(MR$)

Highest
drawdown
(MR$)

Contracted
amount
(avgMW)

Very high 7.11 3.01

0.50 0.30

45.47

High 7.26 3.24 44.75

Mid+ 6.95 3.81 47.23

Base+ 6.72 5.00 48.87

Base- 4.78 3.02 44.75

Mid- 5.19 3.89 46.95

Low 5.01 4.17 54.28

Very low 5.60 4.89 54.28

Static 6.05 3.00 0.50 0.30 60.31

Spot 5.93 2.17 0.45 1.39 –

actual generation and the committed energy is sold in the spot market. In
general, higher contract levels are observed in lower price paths, which is due
to lower spreads in the forward market as per (7-1). Expected values range
from 7.12 MR$ (in higher price paths) to 4.78 MR$ (in the base low path).
The dynamic policy, by definition, complies with the risk policy. Interestingly,
all three risk constraints have at least one path in which they are binding, and
every path has at least one binding constraint.

On the other hand, the static solution locks in, today, prices for approx-
imately 60% of the trading energy, which corresponds to a 60 avgMW com-
mitment for the following month. Given the stochastic nature of the results,
a very interesting way of visualizing the value of each solution is through the
inverse cumulative probability distribution (quantile function) of their respec-
tive accumulated revenues. Figure 7.4 show these results from the root node,
in which all 200 scenarios are foreseen.

It is noteworthy that both solutions have the same monthly expected
revenue of 6.05 MR$, i.e, the same resulting objective function value. Further-
more, the aggregated monthly CVaR constraint, calculated from the two-stage
perspective (when seeing the tree with one node per stage only), does not
appear to be binding in the dynamic solution, as opposed to the static one.
However, the trading policy indicated by the latter does not necessarily meet
risk constraints in every path.

As an alternative, in the multistage perspective, Figure 7.5 shows the
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Figure 7.4: Monthly revenue quantile function for multistage and two-stage
strategies.

inverse cumulative probability distribution function for the “Very high" tree
path. In this case, the monthly 90%–CVaR constraint is binding for the
multistage solution, but is far from meeting the risk-policy limit in the static
solution case (the 90%–M CVaR values 0.93 MR$, 70% lower than the limit).
Other weekly and monthly constraint violations are found in the “Very high"
(90%–W CVaR of 144 kR$ in week 3) and “High" (90%–M CVaR of 2.6 MR$)
paths for the static solution.

7.3
Assessing the Value of Solutions Under a Risk-aversion Profile

In this analysis, we emulate a situation where the trading company,
with a risk-preference induced by the optimal solution of the decision problem
(5-1)–(5-13), can evaluate a variety of strategies. In this setting, the company
must select the strategies to find solutions that may bring expected returns
greater or equal to the optimal solution shown in 7.2. On this basis, we apply
the performance measure described in section 6 while extending its scope to
consider all risk constraints.

The first step is to obtain the preference functional, which can be done by
finding the minimum penalties for each constraint violation from the multistage
problem. For the maximum one-period drawdown, 600 multipliers were found,
equivalent to the 200 scenarios times three stage transitions. These dual
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Figure 7.5: Monthly revenue quantile function for “Very high" path.

variables, ηs,t, defined lower bounds for the penalties between 0 to 1.11. As
for the stage-wise W CVaR constraints, the 23 nodes defined lower bounds
for the penalties between 0 to 0.06 in binding nodes. Lastly, for the monthly
CVaR, eight tree paths generated penalties ranging between 0 to 1.37.

In this study, we generated two trading strategies based on the optimal
static (two-stage) and dynamic (multistage) approaches, respectively, and con-
ducted several sensitivity analysis. The results of each sensitivity is presented
in a (column) block of Figure 7.6, whose lower captions indicate the risk con-
straints that were considered. So, from the left to right, risk constraints were
gradually removed from the original problem set of three risk constraints. Each
block contains two bars, whose total height are associated with the expected
revenue for the dynamic and static strategies, respectively. The value of the
preference functional applied to each strategy is displayed in light blue bars.
The penalty values for the maximum drawdown, monthly (M CVaR), and
weekly (W CVaR) constraints are depicted through dotted, dark-gray, and
black bars, respectively. Note that, according to (6-8), the expected revenue is
equal to the sum of the preference functional and violation penalties. Thus, we
display the expected revenue value (in MR$) on the top of each bar, whereas
the value of the preference functional is shown inside the lowermost light blue
bars (also in MR$).

In the first (left) block of Figure 7.6, we can see the results of the dynamic
and static approaches described in 7.2. As mentioned before, both solutions
have the same expected revenue (6.05 MR$). Nevertheless, a 420 kR$ penalty is
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Figure 7.6: Preference functional.

incurred by the static solution due to monthly CVaR violations, which lowered
the preference functional value of this solution by 7.0% in comparison to the
multistage strategy. Thus, for the dynamic risk-preference introduced, 420 kR$
can be regarded as the value of the multistage model.

On the other hand, the policy suggested by the dynamic solution dis-
regarding weekly constraints (second block) indicates a value of 6.04 MR$.
This is less than 1% lower than the optimal dynamic strategy compliant to
all constraints (first column). In this case, disregarding the weekly constraints
allowed a 10 kR$ increase in expected value, but at the cost of 20 kR$ in
violation penalties. Note that, as much as we relax constraints, the preference
functional value decreases until it reaches the lowest value for the risk-neutral
strategies, where all risk constraints are disregarded. In this framework, we are
able to quantify the loss of preference (certainty equivalent) due to individual
constraint violations. For instance, the drawdown risk constraint is responsi-
ble for the highest loss in preference, when compared to the other individual
constraints.
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Conclusions

This work presented a multistage stochastic model that can be used to
assist risk-averse agents in defining their optimal dynamic involvement in for-
ward contracts. The proposed model allows energy traders and producers to
devise strategies that maximize revenue and hedge against price-and-quantity
risks. We combined a dual-scale decision tree to jointly account for opera-
tional (hourly spot prices and renewable generation) and strategic (weekly
forward prices) uncertainties. Furthermore, three time-consistent dynamic risk
constraints (based on weekly and monthly conditional CVaR constraints, and
maximum one-period drawdown) were proposed to define a risk policy. The
representation of both uncertainties within a dynamic risk management frame-
work has shown to have a relevant impact on trading strategies.

Results based on realistic data from the Brazilian power system show that
static solutions, which are myopic in terms of the dynamics of risk constraints
and "wait and see" contracting opportunities, tend to over contract and expose
the company to market risks. In this context, when contrasted to the proposed
dynamic strategy, results indicate that static strategies significantly violate risk
limits in high-price trajectories. Thus, a preference functional was derived to
assess the value of the multistage model. Furthermore, the proposed functional
helped to quantify the value, in terms of the certainty equivalent, of each
dynamic risk constraint.
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